
COSC 111. Page 1

Dr. Firas Moosvi

Acknowledgement: Slides (provided by Dr. Abdallah Mohammed) mainly rely on the materials prepared by Y. 
D. Liang for the textbook “Introduction to Java Programming, 10th Ed., Pearson Edu. Inc.”.

Practical Guide to Java Programming



COSC 111. Page 2

Information about the Final Exam

¥ Check SSC for the official date and time of the Final Exam

¥ There will be some multiple choice questions, but the majority 
will be coding tasks

¥ The final exam will be:

¥ Cumulative.

¥ Live (2.5 hours), invigilated, but no proctoring.

¥ Open book, open-notes, open-web but no cheating sites like 
Chegg/Course-Hero/Bartleby etc

¥ IDEs are ok

¥ On Canvas, hopefully using Gradescope



COSC 111. Page 3

Announcements

¥ This week (Week 11) will be the last week of labs in the course!

¥ Next Monday April 5th is a holiday so lecture is cancelled, use 
this time to catch up

¥ Office hours will resume as normal after Easter Monday.

¥ In Week 13 I will give you a preview of Inheritance and what’s to 
come in future COSC courses, and cover some stuff we skipped 
from the first week that will make a lot of sense to you now!



COSC 111. Page 4

Student Evaluations of Teaching (SEoT)

¥ You may have received an email that student evaluations of 
teaching is now open for this course.

¥ Research shows that SEoT are flawed because they are 
influenced by unconscious and unintentional biases. 



COSC 111. Page 5

Student Evaluations of Teaching (SEoT)

¥ Despite their flaws, Teaching Evaluations are used to 
departments to: 
¥ Make decisions on Tenure and Promotion
¥ Decide which courses instructors teach
¥ Rate/rank grant applications and awards

¥ More important to me however, is how you felt about the course 
content, the structure, and me as an instructor. 

I want to hear from you!

¥ My goal is to get at least a 70% response rate on SeOT, the 
more the merrier!



COSC 111. Page 6

Student Evaluations of Teaching (SEoT)

¥ Course Evaluations will be open starting March 31



COSC 111. Page 7

Conventions for Structuring Java Projects



COSC 111. Page 8

Simple Java files
If your Java file is very simple and unsophisticated, you can just 
have a single .java file and keep all your code in one file.

main()

indexOfMin()



COSC 111. Page 9

Complex Java Projects
If your Java project starts having multiple methods, and classes, 
you will need to create a Java Project and put each class in a 
separate file. 

This has several advantages:

o Easier to code (less scrolling)
o Easier to debug (allows you to pinpoint problematic methods)
o Easier to expand or refactor
o Pretty much required from now on!

Easiest thing to do is to have each Java project in its own folder. 
You can do this on Eclipse (File-> New Project) or in VS Code (



COSC 111. Page 10

Demo



COSC 111. Page 11

Debugging



COSC 111. Page 12Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. 

Remember: Programming Errors
3 types of errors:
§ Syntax Errors

• Detected by the 
compiler 
• aka compilation errors

§ Runtime Errors
• Causes the program to 

abort during the 
runtime.

§ Logic Errors
• Produces incorrect 

result during the 
runtime
• no error message is 

shown
12

Can’t divide by zero

Output is incorrect 
due to wrong formula



COSC 111. Page 13

Debugging your code
Debugging is the act of finding and correcting errors in a system.

A common reason for computer errors is our lack of precision
in specifying instructions to the computer 

As a programmer, you need to know how to debug your code.

Eclipse provides us with tools to help us identify the source of 
errors our code.

Both Syntax and Runtime errors are easily found whenever they 
occur (with the help with the error message that appears on the 
console).
§ Syntax errors are identified before compilation.
§ Runtime errors are identified while the program is running.

Logic errors can be located using Eclipse Debugger



COSC 111. Page 14

Remember: Eclipse: Debugging and Breakpoints
Debug 
button

Code editor

Console (execution)

Variable view

Breakpoint

Step and Play Buttons

Next statement 
to execute



COSC 111. Page 15

Basic concepts
Debugger: a tool that allows you to run a program interactively 
while watching how your code runs and how the variables 
change.
§ To start debugging your code, do one of the following:

• right click on the class file and select Debug As à Java Application
• From the Run menu, choose Debug. 
• Click the debug button.

§ This will open the Debug perspective in Eclipse.
• You can switch to the default Java perspective by choosing Window 

menu à Open perspective à Java Browsing.

Breakpoint: a point in your source code where the program 
execution stops during debugging. 
§ Once the program stops, you can inspect the variables and run 

the program in a controlled manner. 
§ To define a breakpoint in your program, do one of the following:

• double-click in the left margin of the Java editor in Eclipse.
• right-click in the left margin and select Toggle Breakpoint. 



COSC 111. Page 16

Basic concepts, cont’d

Variables can be 
monitored here

Code execution can be 
controlled from here



COSC 111. Page 17

Code Execution Controls
When your code stops at a breakpoint, you can use the following 
to control the execution of your program:
§ Resume (F8) 

• Continue execution till the next breakpoint.
§ Step over (F6)

• Execute the given statement and move to the next one. If the statement 
contains a method, the debugger will not go into each line of the 
method.

§ Step into (F5)
• Runs the same as “step over” if the statement does not contain a 

method. But if it does, the debugger will enter the method and continue 
debugging there.

§ Step out (F7) 
• get out of a method back to the statement where the method was called.



COSC 111. Page 18

Try this …
Create a class called 
Test1 (or any name of 
your choice) with this 
code in eclipse and then 
follow the steps on the 
following few slides. 

public class Test1 {
public static void main(String[] args) {

int x, y;
x = 10;
y = 20;
int sum = add(x,y);
if(sum < 10)
System.out.println("Low");

else 
System.out.println("High");

int product = multiply(x,y);
System.out.println(product);

}

private static int add(int a, int b) {
System.out.println("inside sum");
return a + b;

}

private static int multiply(int a, int b) {
System.out.println("inside sum");
return a * b;

}
}



COSC 111. Page 19

Tutorial
1) Set a breakpoint at statement #4, i.e. at x = 10;



COSC 111. Page 20

Tutorial, cont’d
2) Start the debugger. Note how the execution is suspended at the breakpoint. 
The statement highlighted in green has not been executed yet.



COSC 111. Page 21

Tutorial, cont’d
3) Proceed by hitting F5 (step into) – this will set x to 10, and move to next 
statement. Note how x is not added to the variable list on the right.



COSC 111. Page 22

Tutorial, cont’d
4) Press F5 (step into) again – this will set y to 20 and add it to the variable 
list, then move to next statement.



COSC 111. Page 23

Tutorial, cont’d
5) Press F5 (step into) again – this will take you into the sum method. Note:
§ The call stack now refers to the sum method (on the left)
§ The variable list now refer to the local variables in the sum method (right)



COSC 111. Page 24

Tutorial, cont’d
6) Press F5 (step into) again – note how we went into the println() method.
§ We should have pressed on F6 (step over) to run the println() method without 

going into it. However, we will fix this in the next step. 



COSC 111. Page 25

Tutorial, cont’d
7) Press F7 (step out) to finish the execution of the println() method and get 
out of it back to your program.



COSC 111. Page 26

Tutorial, cont’d
8) Press F6 (step over) a few more times and note:
§ how the variables change after you execute every statement. 
§ Which statements run or skipped (e.g. in the if-statement)
§ How we don’t get into any methods (neither println() nor multiply()).



COSC 111. Page 27



COSC 111. Page 28

Debugging in VS Code

Source: VS Code Docs

https://code.visualstudio.com/docs/java/java-debugging


COSC 111. Page 29

Debugging in VS Code

Source: VS Code Docs

https://code.visualstudio.com/docs/java/java-debugging

